Celebrating Fifty Plus Years of Mass Spectrometry in Space

This year marks the 50th anniversary of the first human landing on the moon. That momentous occasion was made possible by some of our finest technology—including mass spectrometry. For example, dating all the way back to the first Apollo missions, earlier generations of the mass spec were keeping an eye on cabin air quality. In this post, we recognize and celebrate the various roles played by mass spectrometry in more than fifty years of space exploration.

The Use of Mass Spectrometry in the Moon and Orbital Space Programs

Atmospheric analysis was the primary purpose for mass spectrometry in the first decades of the space program. Initially, it was used to monitor VOCs during early space flights. Once we actually landed on the moon, mass spectrometry was tapped again to analyze the moon’s atmosphere. Today, mass spectrometry is currently used to monitor air quality at the International Space Station.

Much of the revolutionary nature of mass spec’s use in space exploration had to do with transforming MS instruments to withstand the unique challenges of space. Both the analytical capabilities of mass spectrometry and the logistical needs of mass spec instruments themselves were challenged by operating in that most unforgiving environment. MS sensitivity, selectivity, and speed of processing all had to be addressed. The instruments themselves had to take up minimal space, weigh as little as possible, draw from a very limited power supply, and be able to withstand the significant gravitational forces of being hurled into space, as well as the radiation they encountered once they got there. Much of that successful miniaturization has contributed to the plethora of new mass spec uses today, some of which we’ve discussed previously.

Mass Spectrometry and Planetary Exploration

Mass spectrometry has also contributed much to our knowledge of Mars. The Viking landers and orbiters deployed mass specs that taught scientists most of what they knew about Mars until after the millennium, including revolutionary ideas about the possibility of water on the red planet. While those early lander missions were supposed to last just 90 days, Viking 1 continually sent information back for six years. (Can you imagine any lab’s mass specs being asked to perform reliably and remotely for years without servicing?)

Such explorations aren’t limited to Mars. The Huygens Probe, launched from Cassini, sampled the atmosphere on Saturn’s moon Titan a decade ago, finding complex organic compounds. The Pioneer Venus probe carried five mass specs, which had to be specially modified to handle the volume of incoming data as the probe rushed through the atmosphere, and also needed to discount background contamination by metal ions that would disperse off the instrument’s surface. Today, the Curiosity Rover is analyzing Mars as you read this, using a quadrupole mass spec to sample various rock layers as it moves across the surface of the planet.

Mass Spec’s Future, on Earth and in Space

As noted above, scientific advancements that enabled the MS to take flight have revolutionized the mass spectrometer here on earth. Newer technologies have included the direct sampling ion trap and ion-mobility spectrometry. Direct sampling allows for real-time air monitoring, which is essential for the health of humans in space. Ion-mobility spectrometry is used today to detect drugs and explosives, and the speed of its separations and ease of use are proving to be game-changers here on earth.

Meanwhile, another mass spectrometer has arrived where no human—or human instrument—has gone before: the sun. NASA’s Parker Solar Probe is currently orbiting the sun, collecting data that is expected to revolutionize scientific understanding of our home star. The first batch of data has arrived back here on earth and scientists are eager to interpret what this mass spec has discovered.

While IonBench dedicated lab furniture has yet to go into space, we are proud of all the work our benches have done to support MS work here on earth. To learn how IonBenches can support your mass spectrometry projects, reach out to Tim Hawkins via email or at 1-888-669-1233.